«Развитие математических способностейу детей через развивающие игры»
Одна из основных задач дошкольного образования — математическое развитие ребенка. Оно не сводится к тому, чтобы научить дошкольника считать, измерять и решать арифметические задачи. Это еще и развитие способности видеть, открывать в окружающем мире свойства, отношения, зависимости, умения их «конструировать» предметами, знаками и словами.
Особая роль при этом отводится нестандартным дидактическим средствам. Сегодня это блоки Дьенеша, палочки Кюизенера, игры Воскобовича, счетные палочки, наглядные модели и др. Нетрадиционный подход позволяет раскрыть новые возможности этих средств.
Так, широко известные всем счетные палочки оказываются не только счетным материалом. С их помощью можно в доступной пониманию ребенка форме познакомить его с началами геометрии. Используя палочки как единицу измерения, он выделяет элементы фигур и дает им количественную характеристику, строит и преобразует простые и сложные фигуры по условиям, воссоздает связи и отношения между ними.
Палочки Кюизенера могут стать своеобразной «цветной алгеброй». Ребенок учится декодировать игру красок в числовые соотношения: чередование полосок — в числовую последовательность, сочетание полосок в узоре — в состав числа. С помощью сопоставления узоров (ковриков) выводятся свойства чисел (чем больше число, тем больше вариантов его разложения), решаются «цветные» уравнения (сумма и разность находятся через подбор неизвестного из совокупности цветных полосок). При этом не только «считываются» готовые конфигурации, но прежде всего создаются самим ребенком по условиям.
Логические блоки Дьенеша (ЛБД) — абстрактно-дидактическое средство. Это набор фигур, отличающихся друг от друга цветом, формой, размером, толщиной. Эти свойства можно варьировать, однако чаще всего на практике используются три цвета (красный, желтый, синий). Четыре формы (круг, квадрат, треугольник, прямоугольник). По две характеристики величины (большой и маленький) и толщины (тонкий и толстый). Можно использовать и другие цвета и формы, а также более двух характеристик величины (большой, средний, маленький, очень маленький) и толщины. Однако всегда важно ориентироваться на возможности детей, их внутреннюю готовность принять более сложные задачи.
В названном комплекте 48 блоков: 3x4x2x2. Можно ограничиться и меньшим числом блоков: взять меньше цветов, форм или исключить различие по толщине.
ЛБД позволяют моделировать множества с заданными свойствами, например создавать множества красных блоков, квадратных блоков и др. Блоки можно группировать, а далее и классифицировать по заданному свойству: разбивать блоки на группы по величине (большие и маленькие), цвету (красные и не красные) и др. Далее детям можно раскрыть и более сложные операции над множеством (объединение, включение, дополнение, пересечение). Освоить их помогают высказывания с использованием специальных слов: «и, или», «не», «все», «любой», «каждый» и др.
Среди авторских развивающих игр особо можно выделить группу игр, разработанных и произведенных центром «Развивающие игры Воскобовича» в г. Санкт-Петербурге.
В играх, разработкой и производством которых занимается Вячеслав Вадимович Воскобович, заложен огромный творческий потенциал, многовариативность игровых упражнений, с их помощью совершенствуется интеллект, мелкая моторика рук.
Развивающих игр Воскобовича много. Среди самых популярных можно выделить: «Двухцветный и четырехцветный квадраты», Игровизор, «Прозрачный квадрат», «Геоконт», «Чудо – крестики», «Конструктор букв», «Чудо-цветик», «Шнур-затейник», «Лого-формочки», «Коврограф «Ларчик» и другие.
Каждая игра имеет свои отличительные конструктивные элементы, решает определенные образовательные задачи. Все игры рассчитаны на широкий возрастной диапазон. Они привлекают своей красочностью, яркостью, вводимыми забавными игровыми персонажами: например: в «Геоконте» – малыш Гео и паук Юк, в «Прозрачном квадрате» – Незримка Всюсь, ворон Метр, в «Волшебной восьмерке» – попугаи Эник и Беник и т.д.
Использование различных игр Воскобовича позволяет сформировать у детей высокий уровень игровой деятельности, знание базовых форм складывания, умение работать со схемой, умение рассказывать последовательность действий, проявлять фантазию, предвидеть результат, ориентироваться на плоскости, логически мыслить, повысить уровень познавательной активности.
Игры-головоломки, или геометрические конструкторы известны с незапамятных времен. Сущность игры состоит в том, чтобы воссоздавать на плоскости силуэты предметов по образцу или замыслу. Долгое время эти игры служили для развлечения взрослых и подростков. Но современными исследованиями установлено, что они могут быть также эффективным средством умственного, и в частности, математического развития детей дошкольного возраста.
В современной педагогике известны такие игры-головоломки: «Танграм», «Волшебный круг», «Головоломка Пифагора», «Колумбово яйцо», «Вьетнамская игра», «Пентамино»… Все игры объединяет общность цели, способов действия и результата.
Все игры результативны, получается плоскостное, силуэтное изображение предмета. Оно условно, схематично, но образ легко угадывается по основным, характерным признакам предмета, строению, пропорциональному соотношению частей, форме. Из любого набора можно составить абстрактные изображения разнообразной конфигурации, узоры, геометрические фигуры. Если силуэт, составленный играющим, интересен, нов, оригинален по характеру и решению, то это свидетельствует о сформированности у ребенка сенсорных процессов, пространственных представлений, наглядно-образного и логического мышления.